Helping Users Sort Faster with Adaptive Machine Learning Recommendations
نویسندگان
چکیده
Sorting and clustering large numbers of documents can be an overwhelming task: manual solutions tend to be slow, while machine learning systems often present results that don‘t align well with users‘ intents. We created and evaluated a system for helping users sort large numbers of documents into clusters. iCluster has the capability to recommend new items for existing clusters and appropriate clusters for items. The recommendations are based on a learning model that adapts over time – as the user adds more items to a cluster, the system‘s model improves and the recommendations become more relevant. Thirty-two subjects used iCluster to sort hundreds of data items both with and without recommendations; we found that recommendations allow users to sort items more rapidly. A pool of 161 raters then assessed the quality of the resulting clusters, finding that clusters generated with recommendations were of statistically indistinguishable quality. Both the manual and assisted methods were substantially better than a fully automatic method.
منابع مشابه
Hybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملTowards Effective Recommendation of Social Data across Social Networking Sites
Users of Social Networking Sites (SNSs) like Facebook, MySpace, LinkedIn, or Twitter, are often overwhelmed by the huge amount of social data (friends’ updates and other activities). We propose using machine learning techniques to learn preferences of users and generate personalized recommendations. We apply four different machine learning techniques on previously rated activities and friends t...
متن کاملPersonalized Recommendation of Integrated Social Data across Social Networking Sites
We have developed a dashboard application called “SoCConnect” for integrating social data from different social networking sites (e.g. Facebook, Twitter), which allows users to create personalized social and semantic contexts for their social data. Users can blend their friends across different social networking sites and group them in different ways. They can also rate friends and/or their act...
متن کاملArgumentation Schemes for Events Suggestion in an e-Health Platform
In this work, we propose the introduction of persuasion techniques that guide the users into interacting with the Ambient Assisted Living framework iGenda. It is a cognitive assistant that manages active daily living activities, monitors user’s health condition, and creates a social network between users via mobile devices. The objective is to be inserted in a healthcare environment and to prov...
متن کاملPagePrompter: An Intelligent Agent for Web Navigation Created Using Data Mining Techniques
Creating an intelligent agent for web navigation, which is an agent that dynamically gives recommendations to a web site's users by learning from web usage mining and users' behavior, is a challenge for web site designers. In this paper, we introduce a novel algorithm for creating an intelligent agent for navigating a web site based on combining web usage mining and machine learning. We describ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011